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Density, MGF, CGF, saddlepoint

Ingredients

I Random variable Y
I Density function f (y)
I Moment generating function M(s) = E(esY )

I Cumulant generating function K (s) = logM(s)
I Saddlepoint ŝ solving

K ′(ŝ) = y (SE)

Saddlepoint approximation – continuous RV

f̂ (y) =
exp (K (ŝ)− ŝy)√

2πK ′′(ŝ)
(SPA)



Integer and multivariate versions

Saddlepoint Approximation – continuous RV, density f (y)

f̂ (y) =
exp (K (ŝ)− ŝy)√

2πK ′′(ŝ)
where K ′(ŝ) = y

Saddlepoint Approximation – integer-valued, PMF f (y)

f̂ (y) =
exp (K (ŝ)− ŝy)√

2πK ′′(ŝ)
where K ′(ŝ) = y

Saddlepoint Approximation – multivariate

f̂ (y) =
exp (K (ŝ)− ŝy)√
det(2πK ′′(ŝ))

where K ′(ŝ) = y and

I M(s) = E(esY ) = E(es1Y1+···+sd Yd ) is the multivariate MGF
I K ′ and K ′′ are the gradient and Hessian of the multivariate

CGF K (s) = logM(s)



Saddlepoint approximation – summary
The saddlepoint approximation is a systematic method for
converting a known MGF into an approximate probability
density/mass function.

I Edgeworth expansions
I Laplace approximations
I contour integration
I Watson’s lemma
I exponential families
I tilting
I . . .
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Saddlepoint approximations – uses

First strand – classical
Understand sampling distributions
Setup and aims:

I The distribution Y is fixed, either a sampling distribution or
a related statistic

I We seek theoretical understanding of the density function
fY (y) as a function of y , including tail behaviour as |y | → ∞

I . . . particularly in the limit where Y is a sum of n i.i.d. terms
as n→∞

Features
The saddlepoint approximation gives approximate densities
f̂Y (y) with good uniformity in y , a fairly simple functional form as
a function of y and n, and easily interpretable error estimates.



Saddlepoint approximation – likelihood

Second strand – recent
Use saddlepoint to approximate the likelihood.

Saddlepoint approximation – summary
The saddlepoint approximation is a systematic method for
converting a known MGF into an approximate probability
likelihood function.

Saddlepoint approximation to the likelihood

L̂(θ; y) = f̂ (y ; θ) =
exp (K ′(ŝ; θ)− ŝy)√

det(2πK ′′(ŝ; θ)
where K ′(ŝ; θ) = y

as an approximation to L(θ; y) = f (y ; θ).
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Example – wildlife abundance estimation

Two-source capture-recapture models
At every Biometrics conference (“capture occasion”), I ask
everyone to make two fingerprints (right thumb, left index finger)
and send them to me anonymously. Not everyone listens, and
some people send only one fingerprint, or send nothing. After
several conferences, I can get some extra information about the
population by cross-matching fingerprints.

I If Louise sends me both fingerprints on the same piece of
paper, I can match all her fingerprints from all seminars.

I If James sends me some right-thumbprints and some
left-index-fingerprints, but never on the same piece of
paper, I cannot match his fingerprints. James’s papers will
contribute to two piles, “unmatched left” and “unmatched
right.”



Example – wildlife abundance estimation
Two-source capture-recapture models
At every Biometrics conference (“capture occasion”), I ask
everyone to make two fingerprints (right thumb, left index finger)
and send them to me anonymously. Not everyone listens, and
some people send only one fingerprint, or send nothing. After
several conferences, I can get some extra information about the
population by cross-matching fingerprints.

I Using pencil and paper, we can determine what we would
have recorded from one individual, if we knew their
responses across all capture occasions

I For wildlife, we can formulate sensible individual-based
parametric models for how each animal responds at each
capture occasion

I Tigers and stripe patterns, recorded by camera traps
I Whales and barnacle patterns, recorded during photo

surveys
I Mixed photo-genotype studies
I Other effects: misidentification, open populations. . .
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When else?

The simplest setting for the saddlepoint approximation is for
i.i.d. sums:

Yθ =
n∑

i=1

X (i)
θ , X (i)

θ ∼ Xθ i.i.d.

Then

MY (s; θ) = MX (s; θ)n, KY (s; θ) = nKX (s; θ),

and the saddlepoint approximation has nice n-dependence:

L̂(θ; y) =
exp (n [KX (ŝ)− ŝx ])√

det(2πnK ′′X (ŝ))
where x = y/n.



Individual-based models
Definition
An individual-based model for population totals Yθ means a
model

Yθ =
n∑

i=1

X (i)
θ , X (i)

θ ∼ Xθ i.i.d.

I The contribution of a single individual is modelled by a
parametric distribution θ 7→ Xθ for which we know the
(multivariate) MGF

I Contributions are independent across different individuals

I Specifying Xθ and n fully determines the parametric model
θ 7→ Yθ, and KY (s; θ) = nKX (s; θ) is easily computed. . .

I . . . but it may be complicated to compute LY (θ; y)

Note: we do not observe the individual contributions X (i)
θ , only

the population total Yθ.



Example: branching process for population sizes
Example – Davison, Hautphenne & Kraus
Once every year, count the number of birds on an island. Model
this time series by a Galton-Watson branching process, where
at each step

Y (t) d
=

Y (t−1)∑
i=1

X (i)

Individual-based model:
I The individuals are birds
I The X (i)’s are i.i.d. copies of the offspring distribution for a

single individual, which we model by a parametric
distribution θ 7→ Xθ

I θ contains per-individual parameters, eg. birth and death
rates

I The observed data are the population totals across all
individuals at the previous generation



Other kinds of model features

The saddlepoint likelihood method can be applied to any model
for which the CGF KY (s; θ) is available.

I For several common model building-block operations, the
model CGF KY is available in terms of CGFs KX for the
“ingredient” distributions.

Randomly stopped sums

Yθ =
Nθ∑
i=1

X (i)
θ , X (i)

θ ’s i.i.d. and independent of Nθ.

Compound distributions
Yθ ∼ Poisson(Xθ)

and other additive families such as Gamma(shape = X ,
rate = r(θ)), Negative Binomial, Normal.



Other kinds of model features

Inhomogeneous sums

Yθ = Xθ,1 + · · ·+ Xθ,r

where Xθ,i are independent but not identically distributed.

Example – INAR(p), Pedeli, Davison & Fokianos
An integer-valued autoregressive model of order p for a time
series of count data, where at each step

Y (t) d
= Binomial(Y (t−1),q1)+ · · ·+Binomial(Y (t−p),qp)+ ξθ,

with all terms independent. The parameters of interest are the
probabilities q1, . . . ,qp (the autoregressive parameters) and
any parameters in the innovation distribution ξθ.



Other kinds of model features
Thinning and splitting

I Each individual in a population of random size Nθ is kept
with probability p and discarded otherwise, and Yθ,p counts
the number of kept individuals.

I Yθ,p ∼ Binomial(Nθ,p)
I Each individual in a population of random size Nθ is

assigned to one of r categories with probabilities p1, . . . ,pr ,
and Yθ,~p is the vector of counts in each category.

I Yθ,p ∼ Multinomial(Nθ, ~p)

Correlated count variables, partial summaries
Example:

Yθ,1 = X (1)
θ + Zθ, . . . , Yθ,k = X (k)

θ + Zθ,

with X (i)
θ i.i.d. and independent of a single shared random

variable Zθ.



Other kinds of model features

Linear mapping

For a random vector Xθ and a deterministic matrix A, set
Yθ = AXθ

Common use case:

Each individual has a latent category that, if known, determines
how they are counted in vector Y of population totals.

I A is a deterministic matrix, with one column for each
possible latent category and one row for each measured
total in Y

I the entries of Xθ count the number of individuals with each
latent category

The two-source capture recapture model has this form.
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Why does the saddlepoint approximation work?

Tilting
Define the tilted random variable X (s) by

fX (s)(x) =
esx

M(s)
f (x)

Then

MX (s0)(s) = M(s0 + s)/M(s0), KX (s0)(s) = K (s0 + s)− K (s0)

and we can recover f (x) from fX (s)(x):

f (x) = exp (K (s)− sx) fX (s)(x)



Why does the saddlepoint approximation work?

Tilting
Define the tilted random variable X (s) by

fX (s)(x) =
esx

M(s)
f (x), f (x) = exp (K (s)− sx) fX (s)(x)

I The family of tilted distributions is precisely that
exponential family for which X is the sufficient statistic

I The saddlepoint equation K ′(ŝ) = x is the constraint that
the tilted distribution X (ŝ) should have mean equal to the
observed value x



Why does the saddlepoint approximation work?

Tilting
Define the tilted random variable X (s) by

fX (s)(x) =
esx

M(s)
f (x), f (x) = exp (K (s)− sx) fX (s)(x)

Saddlepoint approximation via tilting

1. Tilt X so that its tilted mean is E(X (ŝ)) = K ′(ŝ) = x
I i.e. find within its exponential family that distribution having

mean x

2. Relate f (x) to fX (ŝ)(x) in terms of the relative entropy
K (ŝ)− ŝK ′(ŝ)

3. Approximate the tilted density fX (ŝ)(x) by the normal
approximation to X (ŝ) at its mean.



Why does the saddlepoint approximation work?

Visualization – tilting and saddlepoint approximation
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Saddlepoint approximations for likelihoods

Idea
Use saddlepoint to approximate the likelihood.
Setup and aims:

I The distribution Yθ is a parametric model for the data
vector to be obtained from our experiment

I MGFs, CGFs, densities and saddlepoint approximations
depend on the parameter vector θ

Saddlepoint approximation to the likelihood

L̂(θ; y) = f̂ (y ; θ) =
exp (K ′(ŝ; θ)− ŝy)√

det(2πK ′′(ŝ; θ)
where K ′(ŝ; θ) = y

L(θ; y) = f (y ; θ).



Saddlepoint approximations and MLEs
Idea
Use saddlepoint to approximate the likelihood.

L̂(θ; y) = f̂ (y ; θ) =
exp (K ′(ŝ; θ)− ŝy)√

det(2πK ′′(ŝ; θ)
where K ′(ŝ; θ) = y

I We want to maximise L to obtain the MLE

θMLE(y) = argmax
θ

L(θ; y)

I . . . but if we cannot compute L, we must settle for the

Saddlepoint MLE

θ̂MLE(y) = argmax
θ

L̂(θ; y)



The Saddlepoint Likelihood Method

Idea
Use the saddlepoint approximation to compute approximate
MLEs.

θ̂MLE(y) = argmax
θ

L̂(θ; y)

Key Question: How well does the saddlepoint MLE work?
How big is the discrepancy δ = θMLE(y)− θ̂MLE(y) between the
true MLE and saddlepoint MLE?

Context for comparison
We should compare the discrepancy δ to the scale of sampling
variability θMLE(y)− θ0, asymptotically in a relevant limit.



Approximations and MLEs

General Key Question
How big of a discrepancy δ is introduced by using an
approximation instead of the true log-likelihood function?

Related Key Question
What if we use the normal approximation instead of the
saddlepoint approximation?

I Let Ỹθ be Normal with the same mean and variance as Yθ
(as functions of θ)

I Let L̃(θ; y) be the likelihood function for Ỹθ.
I Maximise to obtain θ̃MLE(y) = argmaxθ L̃(θ; y).
I How big is θMLE(y)− θ̃MLE(y)?



Limiting setup

Yθ =
n∑

i=1

X (i)
θ , X (i)

θ ∼ Xθ i.i.d.

Limiting setup
We consider the limit n→∞, everything else fixed.

Small-sample asymptotics
In practice we are thinking of n being large but not
overwhelmingly large, and we will compare inverse powers of n.

I Note: we do not observe the individual contributions X (i)
θ ,

only the population total Yθ with large population size n.
I Thus n is not quite a sample size, the data vector Yθ has

fixed dimension, and there is no guarantee that n→∞ lets
us identify the data-generating distribution.



Limiting setup

Yθ =
n∑

i=1

X (i)
θ , X (i)

θ ∼ Xθ i.i.d.

Limiting setup
We consider the limit n→∞, everything else fixed.

Small-sample asymptotics
In practice we are thinking of n being large but not
overwhelmingly large, and we will compare inverse powers of n.

I Note: we do not observe the individual contributions X (i)
θ ,

only the population total Yθ with large population size n.
I Thus n is not quite a sample size, the data vector Yθ has

fixed dimension, and there is no guarantee that n→∞ lets
us identify the data-generating distribution.



“Mean-like” identifiability condition

The error in the saddlepoint approximation has largely universal
scaling behaviour. However, the effect on the MLE is
model-dependent and depends on the overall shape of the
log-likelihood function.

“Fully-identifiable” condition
The Jacobian matrix ( ∂

∂θj
E(Xθ,i))i,j has rank = #parameters

I This implies θ 7→ E(Xθ) is (locally) one-to-one
I Informally, all the parameters are “mean-like”
I More formally, the model is “fully identifiable at the level of

the sample mean”



MLE discrepancy – fully identifiable case
Assume:

I appropriate regularity conditions hold
I the identifiability condition holds – “all parameters are

mean-like”
I y = yn ∼ Yθ0,n is drawn according to the model with true

parameter θ0

Then:
I the saddlepoint discrepancy δn = θMLE(yn)− θ̂MLE(yn) is

OP(1/n2)
I the normal approximation discrepancy θMLE(yn)− θ̃MLE(yn)

is OP(1/n)
I the sampling variability is O(1/

√
n)

I all three MLEs are consistent and asymptotically normal
estimators of θ0, and

√
n
(
θMLE − θ0, θ̂MLE − θ0, θ̃MLE − θ0

)
→ (Z ,Z ,Z )

where Z is normal with an explicit covariance matrix.



Estimating the discrepancy
Estimated discrepancy
The (unknown) discrepancy δ = θMLE(y)− θ̂MLE(y) can be
estimated by an explicit quantity δ̂ computed only in terms of
KY and the saddlepoint log-likelihood.

With Godrick Oketch & Rachel Fewster
I Code to quickly and painlessly generate saddlepoint

approximations and MLEs
I An estimate of the discrepancy in the MLE. . .
I . . . and code to generate this estimate painlessly

I devtools::install github(”godrick/saddlepoint”)

Theorem (Godrick Oketch, Rachel Fewster, J.G.)
The estimated discrepancy δ̂ closely approximates the true
discrepancy δ in the sense that

δ, δ̂ = O(n−2), δ − δ̂ = O(n−3)
in the fully identifiable case.



Outline

What is it?

How used?

When?
Example – capture-recapture with ambiguity

When else?

Why?

How well?

How in code?



How is this implemented in code?

Example (Two-source capture-recapture model,
continued)
The observed data vector is given by

Yθ = AXθ
Xθ ∼ Multinomial(N,h(θ))

θ = (N,pL,pR,pB)

The vectors Yθ and Xθ hold the counts of various observed and
true capture histories, and A is the 0-1 matrix where Aij = 1 if
true capture history j contributes to the count for observed
capture history i . The parameters have constraints
pB < pL,pB < pR. Formulas for h(θ) and Aij are reasonably
straightforward but are omitted.



Two-source model in code

Listing 1: Pseudocode for two-source capture-recapture model
1 devtools::install\_github("godrick/saddlepoint")

2 # theta = (N, pL, pR, pB)

3 # Define adaptor function h with theta as the argument

4 h <- function(theta) {...}

5
6 # Define the constraints on the model parameters as a

7 # function of theta: pB < pL and pB < pR

8 # The constraints are set to be non-positive: (pB - pL < 0, pB - pR < 0)

9 constraints.on.theta <- function(theta){

10 list(constraints = c(theta[4] - theta[2], theta[4] - theta[3]),

11 jacobian = rbind(c(0, -1, 0, 1), c(0, 0, -1, 1)))

12 }

13 # Build the CGF for Y as a function of model parameter vector theta

14 K.X <- MultinomialModelCGF(n = adaptor(indices = 1), prob.vec = h)

15 K.Y <- linearlyMappedCGF(cgf = K.X, matrix_A = ...)

16 # Find the estimate of theta

17 find.saddlepoint.MLE(observed.data = Y, cgf = K.Y,

18 starting.theta = ... ,

19 user.ineq.constraint.function = constraints.on.theta,

20 discrepancy = TRUE)



Thank you.



Example – traffic models
Traffic models (from Martin Hazelton, lightly adapted)
Place traffic monitoring devices at various points in a city’s road
network. At the end of a monitoring period, each monitoring
device sends us the number of cars that drove past the device.
The observed data y is the vector of all car counts, one entry
for each device. A sensible model Yθ must account for cars
driving past several nearby devices.
Individual-based model:

I The individuals are drivers
I Each individual chooses a route according to probabilities

obtained from θ, independently across individuals
I Using a city map, we can determine which routes go past

which traffic monitoring devices
I The individual contribution Xθ is the 0-1 vector recording

which devices the individual drives past on their chosen
route



MLE discrepancy – partially identifiable case

Assumption
We assume that the parameter vector can be partitioned as

θ = (ω, τ) where E(Yθ) depends only on ω.
Assume:

I yn = nE(Yθ0) +
√

nz0 is consistent with true
mean-controlling parameter ω0

I Thus: the z-score vector for yn is constant as a function of n
I The Jacobian of ω 7→ E(Xθ) has rank = #parameters in ω
I There is a local MLE for τ with ω = ω0 fixed

I τ must be “variance-like”, i.e., has a non-trivial effect on
Var(Xθ) while keeping E(Xθ) fixed

Then: mean-like discrepancy ωMLE(yn)− ω̂MLE(yn) = O(1/n3/2)
variance-like discrepancy τMLE(yn)− τ̂MLE(yn) = O(1/n)
Under a further explicit condition
ωMLE(yn)− ω̂MLE(yn) = O(1/n2)



Other limiting frameworks

The saddlepoint approximation is well-adapted to the limit
n = (number of i.i.d. summands)→∞

I n→∞ makes the approximation error smaller
I n→∞ is also the region where direct calculation is harder

However, (number of i.i.d. summands)→∞ does not always
apply. Other relevant limits:

I The classical statistical paradigm is
(number of i.i.d. observations)→∞.

I The saddlepoint approximation does not benefit from this
limit.

I (length of time series)→∞.
I Point process data with

(number of spatial observations)→∞.



Approximating the discrepancy

Relative error in the saddlepoint approximation is

L(θ; y)
L̂(θ; y)

=

E
(
exp

(
ε−2

[
K (s + iεZ ; θ)− K (s; θ)− iεZK ′(s; θ) + 1

2ε
2ZK ′′(s; θ)Z T

]))
evaluated with

Z ∼ N (0,K ′′(s; θ)−1), s = ŝ, ε = 1.

The limiting setup Yθ =
∑n

i=1 X (i)
θ corresponds to setting

ε = 1/
√

n. Higher-order approximations are obtained by
expanding as a Taylor series around ε = 0.



Approximating the discrepancy – open question

E
(
exp

(
ε−2

[
K (s + iεZ ; θ)− K (s; θ)− iεZK ′(s; θ) + 1

2ε
2ZK ′′(s; θ)Z T

]))
We can expand the exponential as

1+ε · [odd powers of Z ]+
ε2

24

∑
i1,i2,i3,i4

∂4K
∂si1∂si2∂si3∂si4

Zi1Zi2Zi3Zi4

− ε2

72

∑
i1,i2,i3

∂3K
∂si1∂si2∂si3

Zi1Zi2Zi3

2

+ · · ·

For each fixed value of Z , computing the sums has a fixed
complexity not depending on dimension – this is the Cheap
Gradient Principle.

Open question
Can the Gaussian expectations be computed systematically
with a fixed complexity as dimension grows?



Thank you.
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