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What is it?



Density, MGF, CGF, saddlepoint

Ingredients

Random variable Y

Density function f(y)

Moment generating function M(s) = E(e%")
Cumulant generating function K(s) = log M(s)
Saddlepoint § solving

v

v

v

v

v

K'(8) =y (SE)

Saddlepoint approximation — continuous RV

5oy exp (K(8) - 8y)
fy) = K ® (SPA)



Integer and multivariate versions

Saddlepoint Approximation — continuous RV, density f(y)
i) = SR KB) — 8y)
2rK"(8)
Saddlepoint Approximation — integer-valued, PMF f(y)
Hy) = R(KE) — )
2rK"(8)
Saddlepoint Approximation — multivariate
n exp (K(8) — 8
) = SR KE) — &)
det(2wrK"(8))

where K'(8) = y

where K'(8) = y

where K'(8) =y and

> M(s) = E(eSY) = E(eSYi++a¥4) is the multivariate MGF

» K’ and K” are the gradient and Hessian of the multivariate
CGF K(s) = log M(s)



Saddlepoint approximation — summary

The saddlepoint approximation is a systematic method for
converting a known MGF into an approximate probability
density/mass function.

» Edgeworth expansions
Laplace approximations
contour integration

v

v

Watson’s lemma

v

v

exponential families

v

tilting
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Saddlepoint approximations — uses

First strand — classical
Understand sampling distributions

Setup and aims:
» The distribution Y is fixed, either a sampling distribution or
a related statistic
» We seek theoretical understanding of the density function
fy(y) as a function of y, including tail behaviour as |y| — oo

» ...particularly in the limit where Y is a sum of ni.i.d. terms
as n— oo

Features

The saddlepoint approximation gives approximate densities
?y(y) with good uniformity in y, a fairly simple functional form as
a function of y and n, and easily interpretable error estimates.



Saddlepoint approximation — likelihood

Second strand — recent
Use saddlepoint to approximate the likelihood.

Saddlepoint approximation — summary

The saddlepoint approximation is a systematic method for
converting a known MGF into an approximate probability
likelihood function.

Saddlepoint approximation to the likelihood

_ exp (K'(8;0) — 8y)

L(o:y) = H(y:0) det(2rK"(8;0)

where K'(5;0) = y

as an approximation to L(0; y) = f(y; 0).
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Example — wildlife abundance estimation

Two-source capture-recapture models

At every Biometrics conference (“capture occasion”), | ask
everyone to make two fingerprints (right thumb, left index finger)
and send them to me anonymously. Not everyone listens, and
some people send only one fingerprint, or send nothing. After
several conferences, | can get some extra information about the
population by cross-matching fingerprints.

» If Louise sends me both fingerprints on the same piece of
paper, | can match all her fingerprints from all seminars.

» If James sends me some right-thumbprints and some
left-index-fingerprints, but never on the same piece of
paper, | cannot match his fingerprints. James’s papers will
contribute to two piles, “unmatched left” and “unmatched
right.”



Example — wildlife abundance estimation

Two-source capture-recapture models

At every Biometrics conference (“capture occasion”), | ask
everyone to make two fingerprints (right thumb, left index finger)
and send them to me anonymously. Not everyone listens, and
some people send only one fingerprint, or send nothing. After
several conferences, | can get some extra information about the
population by cross-matching fingerprints.

» Using pencil and paper, we can determine what we would
have recorded from one individual, if we knew their
responses across all capture occasions

» For wildlife, we can formulate sensible individual-based
parametric models for how each animal responds at each
capture occasion

» Tigers and stripe patterns, recorded by camera traps

» Whales and barnacle patterns, recorded during photo
surveys

» Mixed photo-genotype studies

» Other effects: misidentification, open populations. ..



Outline

When else?



When else?

The simplest setting for the saddlepoint approximation is for
i.i.d. sums:

n
Yo=3"X", X"~ Xpiid.
i=1

Then
My (s;0) = Mx(s;0)", Ky(s;0) = nKx(s;0),
and the saddlepoint approximation has nice n-dependence:

exp (1 [Kx(8) — 8x])
det(2rnKL(3))

Lo;y) = where x = y/n.



Individual-based models

Definition
An individual-based model for population totals Yy means a
model n ,
Yo=3"X", X"~ Xyiid.
i=1
» The contribution of a single individual is modelled by a
parametric distribution 6 — Xj for which we know the
(multivariate) MGF

» Contributions are independent across different individuals

» Specifying Xy and n fully determines the parametric model
0 — Yy, and Ky(s; 0) = nKx(s; 0) is easily computed. ..

» ...but it may be complicated to compute Ly(6; y)

Note: we do not observe the individual contributions Xe(i), only
the population total Y.



Example: branching process for population sizes

Example — Davison, Hautphenne & Kraus
Once every year, count the number of birds on an island. Model
this time series by a Galton-Watson branching process, where

at each step
Y(t 1)

Z X0

Individual-based model:
» The individuals are birds

» The X()’s are i.i.d. copies of the offspring distribution for a
single individual, which we model by a parametric
distribution 6 — Xj

» @ contains per-individual parameters, eg. birth and death
rates

» The observed data are the population totals across all
individuals at the previous generation



Other kinds of model features

The saddlepoint likelihood method can be applied to any model
for which the CGF Ky (s; 0) is available.

» For several common model building-block operations, the
model CGF Ky is available in terms of CGFs K for the
“‘ingredient” distributions.

Randomly stopped sums
Ng ,
Y, = ZX(’), Xe(’)’s i.i.d. and independent of N.
i=1

Compound distributions
Yy ~ Poisson(Xp)

and other additive families such as Gamma(shape = X,
rate = r(0)), Negative Binomial, Normal.



Other kinds of model features

Inhomogeneous sums
Yo =Xo1+ -+ Xor
where Xj ; are independent but not identically distributed.

Example — INAR(p), Pedeli, Davison & Fokianos

An integer-valued autoregressive model of order p for a time
series of count data, where at each step

Y(t) £ Binomial(Y(t—1), g1) + - - -+ Binomial( Y (t — p), gp) + &,

with all terms independent. The parameters of interest are the
probabilities gy, .. ., qp (the autoregressive parameters) and
any parameters in the innovation distribution &.



Other kinds of model features
Thinning and splitting

» Each individual in a population of random size Nj is kept
with probability p and discarded otherwise, and Yy , counts
the number of kept individuals.

» Yy p ~ Binomial(Npy, p)
» Each individual in a population of random size Nj is

assigned to one of r categories with probabilities py, ..., pr,
and Yj 5 is the vector of counts in each category.

» Yy p ~ Multinomial(Ny, p)

Correlated count variables, partial summaries
Example:

Yor=X"+2, ... You=X+2,

with X(gi) i.i.d. and independent of a single shared random
variable Zy.



Other kinds of model features

Linear mapping
For a random vector Xy and a deterministic matrix A, set
Yy = AXy
Common use case:
Each individual has a latent category that, if known, determines
how they are counted in vector Y of population totals.

» Ais a deterministic matrix, with one column for each
possible latent category and one row for each measured
totalin Y

» the entries of Xy count the number of individuals with each
latent category

The two-source capture recapture model has this form.
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Why does the saddlepoint approximation work?

Tilting
Define the tilted random variable X(5) by

fys (X) = mf()‘)

Then
My () (8) = M(so + 8)/M(s0),  Kyiso)(S) = K(s0 + 8) — K(S0)
and we can recover f(x) from fys (x):

F(x) = exp (K(8) — $x) s (%)



Why does the saddlepoint approximation work?

Tilting
Define the tilted random variable X(5) by

s (X) = A;(S;)f(x), f(x) = exp (K(8) — 8X) fys)(X)

» The family of tilted distributions is precisely that
exponential family for which X is the sufficient statistic
» The saddlepoint equation K’(5) = x is the constraint that

the tilted distribution X(®) should have mean equal to the
observed value x



Why does the saddlepoint approximation work?
Tilting
Define the tilted random variable X($) by

freo (X) = ,\;(S;) f(x),  f(x) = exp (K(S) — $X) fyco (X)

Saddlepoint approximation via tilting

1. Tilt X so that its tilted mean is E(X®)) = K'(8) = x
» i.e. find within its exponential family that distribution having
mean x

2. Relate f(x) to f,() (x) in terms of the relative entropy
K(s) — sK'(8)

3. Approximate the tilted density f, (x) by the normal
approximation to X(%) at its mean.



Why does the saddlepoint approximation work?

Visualization — tilting and saddlepoint approximation
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Saddlepoint approximations for likelihoods

Idea
Use saddlepoint to approximate the likelihood.

Setup and aims:

» The distribution Yy is a parametric model for the data
vector to be obtained from our experiment

» MGFs, CGFs, densities and saddlepoint approximations
depend on the parameter vector 6

Saddlepoint approximation to the likelihood

_ exp(K'(50) — 8y)
det(27K" (8, 0)

L(0;y) = f(y:0).

where K'(5;0) =y

L(o;y) = T(y:0)



Saddlepoint approximations and MLEs

Idea
Use saddlepoint to approximate the likelihood.

_ exp (K'(8;0) — 8y)

— where K'(5;0) = y
det(27K”(5; 0)

L(6;y) = H(y: 6)
» We want to maximise L to obtain the MLE

Ome(y) = afgg‘ax L(6;y)

» ...but if we cannot compute L, we must settle for the

Saddlepoint MLE

éMLE (y) = arg;nax [(9; y)



The Saddlepoint Likelihood Method

ldea
Use the saddlepoint approximation to compute approximate

MLEs. A A
OumLe(y) = arg;nax L(6;y)

Key Question: How well does the saddlepoint MLE work?

How big is the discrepancy ¢ = Oyie(y) — Ouie(y) between the
true MLE and saddlepoint MLE?

Context for comparison

We should compare the discrepancy ¢ to the scale of sampling
variability Oye(y) — 0o, asymptotically in a relevant limit.



Approximations and MLEs

General Key Question

How big of a discrepancy § is introduced by using an
approximation instead of the true log-likelihood function?

Related Key Question

What if we use the normal approximation instead of the
saddlepoint approximation?

» Let Y, be Normal with the same mean and variance as Y,
(as functions of 6)

» Let L(6; y) be the likelihood function for ;.

» Maximise to obtain Ay e(y) = argmaxy L(6; y).

> How big is e () — Ome(y)?



Limiting setup

n
Yo=S"X", X" ~ X iid.
i=1
Limiting setup
We consider the limit n — oo, everything else fixed.

Small-sample asymptotics

In practice we are thinking of n being large but not
overwhelmingly large, and we will compare inverse powers of n.



Limiting setup

n
Yo=S"X", X" ~ X iid.

i=1

Limiting setup
We consider the limit n — oo, everything else fixed.

Small-sample asymptotics

In practice we are thinking of n being large but not
overwhelmingly large, and we will compare inverse powers of n.

» Note: we do not observe the individual contributions Xg(’),
only the population total Y, with large population size n.
» Thus nis not quite a sample size, the data vector Yy has
fixed dimension, and there is no guarantee that n — ~o lets
us identify the data-generating distribution.



“Mean-like” identifiability condition

The error in the saddlepoint approximation has largely universal
scaling behaviour. However, the effect on the MLE is
model-dependent and depends on the overall shape of the
log-likelihood function.

“Fully-identifiable” condition

The Jacobian matrix ((%E(ngi)),-,j has rank = #parameters

» This implies 6 — E(Xy) is (locally) one-to-one
» Informally, all the parameters are “mean-like”

» More formally, the model is “fully identifiable at the level of
the sample mean”



MLE discrepancy — fully identifiable case
Assume:
» appropriate regularity conditions hold
» the identifiability condition holds — “all parameters are
mean-like”
> ¥V = Yn~ Yp,.nis drawn according to the model with true
parameter 6,

Then:
» the saddlepoint discrepancy 6, = Ouie (Vn) — Owme(Vn) is
Op(1/r?) B
» the normal approximation discrepancy Ouie(yn) — Omee(Vn)
is Op(1/n)

» the sampling variability is O(1//n)
» all three MLEs are consistent and asymptotically normal
estimators of 6y, and

V1 (Owie — o, Owmie — b0, Omie — 00) — (Z.2.2)

where Z is normal with an explicit covariance matrix.



Estimating the discrepancy

Estimated discrepancy

The (unknown) discrepancy § = QMLE(y) - 9MLE(y) can be
estimated by an explicit quantity 0 computed only in terms of
Ky and the saddlepoint log-likelihood.

With Godrick Oketch & Rachel Fewster

» Code to quickly and painlessly generate saddlepoint
approximations and MLEs
» An estimate of the discrepancy in the MLE. ..
» ...and code to generate this estimate painlessly
» devtools::install_github("godrick/saddlepoint”)

Theorem (Godrick Oketch, Rachel Fewster, J.G.)
The estimated discrepancy § closely approximates the true
discrepancy 4 in the sense that
5,0 =0(n"2), 6—46=0(n3)
in the fully identifiable case.
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How is this implemented in code?

Example (Two-source capture-recapture model,
continued)

The observed data vector is given by

Yo = AXy
Xy ~ Multinomial(N, h(6))
0= (N’pL’pRapB)

The vectors Yy and X, hold the counts of various observed and
true capture histories, and A is the 0-1 matrix where A; = 1 if
true capture history j contributes to the count for observed
capture history i. The parameters have constraints

pB < P, Ps < pr- Formulas for h(#) and Aj; are reasonably
straightforward but are omitted.



Two-source model in code

Listing 1: Pseudocode for two-source capture-recapture model

devtools::install\_github ("godrick/saddlepoint")

# theta = (N, pL, pR, pB

# n with theta as the argument

h -1

# th rs as a

# f pL and pB < pR

# The constraints are set to be non-positive: (pB pL < 0, pB PR < 0)

constraints.on.theta <- function(theta) {
list (constraints = c(theta[4] - theta[2], thetal[4] - theta[3]),

jacobian
}

# Build the CGF for Y as a fu

rbind(c (0, -1, 0, 1), c(0, 0, -1, 1)))

tion of mc r theta

K.X <- MultinomialModelCGF (n = adaptor (indices = 1), prob.vec = h)
K.Y <- linearlyMappedCGF (cgf = K.X, matrix_ A = ...)

>stimate of theta

find.saddlepoint .MLE (observed.data = Y, cgf = K.Y,
starting.theta = ... ,

user.ineq.constraint.function = constraints.on.theta,

Nt g
QOONOOPARWN—LOOWONOOIRWN—

discrepancy = TRUE)



Thank you.



Example — traffic models

Traffic models (from Martin Hazelton, lightly adapted)
Place traffic monitoring devices at various points in a city’s road
network. At the end of a monitoring period, each monitoring
device sends us the number of cars that drove past the device.
The observed data y is the vector of all car counts, one entry
for each device. A sensible model Yy must account for cars
driving past several nearby devices.

Individual-based model:
» The individuals are drivers

» Each individual chooses a route according to probabilities
obtained from 6, independently across individuals

» Using a city map, we can determine which routes go past
which traffic monitoring devices

» The individual contribution Xj is the 0-1 vector recording
which devices the individual drives past on their chosen
route



MLE discrepancy — partially identifiable case

Assumption

We assume that the parameter vector can be partitioned as
0 = (w,7) where E(Yy)depends only onw.

Assume:

> yn = nE(Yy,) + /Nzy is consistent with true
mean-controlling parameter wq
» Thus: the z-score vector for y, is constant as a function of n
» The Jacobian of w — E(Xj) has rank = #parameters in w
» There is a local MLE for 7 with w = wyg fixed
» 7 must be “variance-like”, i.e., has a non-trivial effect on
Var(Xy) while keeping E(Xjy) fixed
Then: mean-like discrepancy wmie(Vn) — Ome(¥n) = O(1/n%/?)
variance-like discrepancy ue(¥n) — TmLe(Yn) = O(1/n)
Under a further explicit condition
wmLE(Yn) — OmLe(Yn) = O(1/n?)



Other limiting frameworks

The saddlepoint approximation is well-adapted to the limit
n = (number of i.i.d. summands) — oo

» n — oo makes the approximation error smaller
» n— oo is also the region where direct calculation is harder
However, (number of i.i.d. summands) — oo does not always
apply. Other relevant limits:
» The classical statistical paradigm is
(number of i.i.d. observations) — oo.
» The saddlepoint approximation does not benefit from this
limit.
» (length of time series) — oo.
» Point process data with
(number of spatial observations) — oc.



Approximating the discrepancy

Relative error in the saddlepoint approximation is

6:y) _

%

E (exp (5—2 [K(s +i2Z:0) — K(s:0) — ieZK'(s:0) + 32ZK"(5,0)Z7

~

~

~
~—

evaluated with
Z ~N(0,K"(s;0)™"), s=8§ e=1.

The limiting setup Yy = Y"1, X(,(/) corresponds to setting
¢ = 1/+/n. Higher-order approximations are obtained by
expanding as a Taylor series around ¢ = 0.



Approximating the discrepancy — open question

E (exp (5*2 [K(s +ieZ:0) — K(s:0) — ieZK'(s:0) + 3:2ZK"(s:0)Z
We can expand the exponential as
i 0*K
24 - (98,'1 0S; 88,'333,'4

i152,13,4 2

2
€2 PK
= Z.Z. 7
72 .63;183;265/3 1™l +
3

1+¢-[odd powers of Z]+ 22,22,

H,h2,

For each fixed value of Z, computing the sums has a fixed
complexity not depending on dimension — this is the Cheap
Gradient Principle.

Open question
Can the Gaussian expectations be computed systematically
with a fixed complexity as dimension grows?



Thank you.
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